Tripartite mechanism of extinction suggested by dopamine neuron activity and temporal difference model.
نویسندگان
چکیده
Extinction of behavior enables adaptation to a changing world and is crucial for recovery from disorders such as phobias and drug addiction. However, the brain mechanisms underlying behavioral extinction remain poorly understood. Midbrain dopamine (DA) neurons appear to play a central role in most acquisition processes of appetitive conditioning. Here, we show that the responses of putative DA neurons to conditioned reward predicting cues also dynamically encode two classical features of extinction: decrement in amplitude of previously learned excitatory responses and rebound of responding on subsequent retesting (spontaneous recovery). Crucially, this encoding involves development of inhibitory responses in the DA neurons, reflecting new, extinction-specific learning in the brain. We explored the implications of this finding by adding such inhibitory inputs to a standard temporal difference model of DA cell activity. We found that combining extinction-triggered plasticity of these inputs with a time-dependent spontaneous decay of weights, equivalent to a forgetting process as described in classical behavioral extinction literature, enabled the model to simulate several classical features of extinction. A key requirement to achieving spontaneous recovery was differential rates of spontaneous decay for weights representing original conditioning and for subsequent extinction learning. A testable prediction of the model is thus that differential decay properties exist within the wider circuits regulating DA cell activity. These findings are consistent with the hypothesis that extinction processes at both cellular and behavioral levels involve a dynamic interaction between new (inhibitory) learning, forgetting, and unlearning.
منابع مشابه
Value Learning and Arousal in the Extinction of Probabilistic Rewards: The Role of Dopamine in a Modified Temporal Difference Model
Because most rewarding events are probabilistic and changing, the extinction of probabilistic rewards is important for survival. It has been proposed that the extinction of probabilistic rewards depends on arousal and the amount of learning of reward values. Midbrain dopamine neurons were suggested to play a role in both arousal and learning reward values. Despite extensive research on modeling...
متن کاملTemporal Difference Model Reproduces Anticipatory Neural Activity
Anticipatory neural activity preceding behaviorally important events has been reported in cortex, striatum, and midbrain dopamine neurons. Whereas dopamine neurons are phasically activated by reward-predictive stimuli, anticipatory activity of cortical and striatal neurons is increased during delay periods before important events. Characteristics of dopamine neuron activity resemble those of th...
متن کاملModeling functions of striatal dopamine modulation in learning and planning.
The activity of midbrain dopamine neurons is strikingly similar to the reward prediction error of temporal difference reinforcement learning models. Experimental evidence and simulation studies suggest that dopamine neuron activity serves as an effective reinforcement signal for learning of sensorimotor associations in striatal matrisomes. In the current study, we simulate dopamine neuron activ...
متن کاملTD models of reward predictive responses in dopamine neurons
This article focuses on recent modeling studies of dopamine neuron activity and their influence on behavior. Activity of midbrain dopamine neurons is phasically increased by stimuli that increase the animal's reward expectation and is decreased below baseline levels when the reward fails to occur. These characteristics resemble the reward prediction error signal of the temporal difference (TD) ...
متن کاملA Model of Dopamine and Uncertainty Using Temporal Difference
Does dopamine code for uncertainty (Fiorillo, Tobler & Schultz, 2003; 2005) or is the sustained activation recorded from dopamine neurons a result of Temporal Difference (TD) backpropagating errors (Niv, Duff & Dayan, 2005)? An answer to this question could result in a better understanding of the nature of dopamine signaling, with implications for cognitive disorders, like Schizophrenia. A comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 39 شماره
صفحات -
تاریخ انتشار 2008